Impacts of Ventilation Ratio and Vent Balance on Cooling Load and Air Flow of Naturally Ventilated Attics

نویسندگان

  • Shimin Wang
  • Zhigang Shen
چکیده

The impacts of ventilation ratio and vent balance on cooling load and air flow of naturally ventilated attics are studied in this paper using an unsteady computational fluid dynamics (CFD) model. Buoyancy-driven turbulent ventilations in attics of gable-roof residential buildings are simulated for typical summer conditions. Ventilation ratios from 1/400 to 1/25 combined with both balanced and unbalanced vent configurations are investigated. The modeling results show that the air flows in the attics are steady and exhibit a general streamline pattern that is qualitatively insensitive to the variations in ventilation ratio and vent configuration. The predicted temperature fields are characterized by thermal stratification, except for the soffit regions. It is demonstrated that an increase in ventilation ratio will reduce attic cooling load. Compared with unbalanced vent configurations, balanced attic ventilation is shown to be the optimal solution in both maximizing ventilating flow rate and minimizing cooling load for attics with ventilation ratio lower than 1/100. For attics with ventilation ratios greater than 1/67, a configuration of large ridge vent with small soffit vent favors ventilating air flow enhancement, while a configuration of small ridge vent with large soffit vent results in the lowest cooling energy consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Roof Pitch and Ceiling Insulation on Cooling Load of Naturally-Ventilated Attics

A 2D unsteady computational fluid dynamics (CFD) model is employed to simulate buoyancy-driven turbulent ventilation in attics with different pitch values and ceiling insulation levels under summer conditions. The impacts of roof pitch and ceiling insulation on the cooling load of gable-roof residential buildings are investigated based on the simulation of turbulent air flow and natural convect...

متن کامل

Thermal Modeling for Predication of Automobile Cabin Air Temperature

Thermal modeling of an automotive cabin was performed in this paper to predict the inside cabin air temperature. To implement this task, thermal and ventilation loads were estimated and the mass and energy balance conservation equations for dry air and water vapor with considering a new parameter (air circulation ratio) as well as the balance equations of internal components of a cabin were de...

متن کامل

Mixed Convection Flow in a Rectangular Ventilated Cavity with a Heat Conducting Solid Circular Cylinder at the Center

A numerical investigation has been carried out for mixed convection flow in a rectangularventilated cavity with a heat conducting solid circular cylinder at the center. Forced convection flowconditions were imposed by providing an inlet at the bottom of the left wall and an outlet vent at the topto the other sidewall. In this paper, the effect of cavity aspect ratio as well as the mixed convect...

متن کامل

Effect of opening diffuser and return vent location on air quality, thermal comfort and energy saving in desk displacement ventilation (DDV) system

Many investigations have recently been performed on return vent height and indicate that having 1.3 m distance from the floor is the optimized height for it. In this article, the effect of distance between opening diffuser and return vent on air quality, thermal comfort and energy saving was investigated. According to the results, by increasing the distance between opening and return vent up to...

متن کامل

Numerical simulation of buoyancy-driven turbulent ventilation in attic space under winter conditions

Attic design and construction have significant impacts on residential buildings’ energy performance. In order to understand how passive ventilation rates affect ridge-vent attic’s performance, a twodimensional steady-state finite volume model is employed to simulate the buoyancy-driven turbulent ventilation and heat transfer in a triangular attic space of a gable-roof residential building under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012